Ces deux localités (fig. 1) s'alignent sur un transect sud-est - nord-ouest d'une vingtaine de kilomètres environ, à peu près perpendiculaire à la bordure de la plate-forme (fig. 2). Des observations complémentaires ont été réalisées dans les sites suivants : Marseilleveyre-La Cayolle, Notre-Dame-de-la-Garde, Massif de Puget, Allauch (Vallon de Passetemps), Nerthe-Valtrède (près de Châteauneuf-les-Martigues).

3. - SÉDIMENTOLOGIE

Dans sa localité type, le « Faisceau bioclastique du Mont-Rose » (fig. 4), comprend deux séquences lithologiques granocroissantes métriques (séquences I et II). Chacune débute parr une surface d'émersion (E1 et E2) qui présente de nombreuses figures d'érosions, parfois macroscopiques (surface E2), indiquant des conditions supratidales (voir ci-après). Nous y avons défini huit faciès types (A à H), mais seuls les faciès B à G appartiennent aux séquences qui composent le « Faisceau bioclastique du Mont-Rose ». La séquence I (6 m) débute par des micropackstones à pellets et Calcisphaerulidae et se termine par des grainstones oolithiques. La séquence II (2 m) débute également par des micropackstones à pellets et Calcisphaerulidae et se termine par des grainstones par des grainstones grossiers à lithoclastes.

Ces deux séquences présentent des surfaces d'érosions dominées par des phénomènes mécaniques ou biochimiques et s'accompagnent de structures sédimentaires remarquables que nous détaillerons ciaprès.

3.1. Surfaces érosives

3.1.1. Erosion dominée par des phénomènes mécaniques

Les figures produites sont de deux types :

- les gouttières d'érosion [gutter casts sensu Whitaker, 1973], qui peuvent atteindre une profondeur maximale de 5 cm pour une largeur de 5 à 10 cm. Leur forme en section est très variable, en U ou en V, étroite ou évasée, symétrique ou dissymétrique,
- les sillons d'érosion [sensu Dyer, 1970], correspondant à des figures de plus grandes dimensions et entaillant faiblement le substratum sur 5 à 10 cm pour une largeur au moins décimétrique. Certains sont à fond plat et à parois abruptes, d'autres à fond concave.

Ces deux structures résulteraient d'écoulements hélicoïdaux induits par un flux mixte combiné unidirectionnel/oscillatoire [Kreisa, 1981; Dott et Bourgeois, 1982; Aigner, 1985], ce qui, sur la plate-forme, correspondrait à des courants de tempêtes. La figure 5 illustre les figures d'érosions affectant la surface émersive E1.

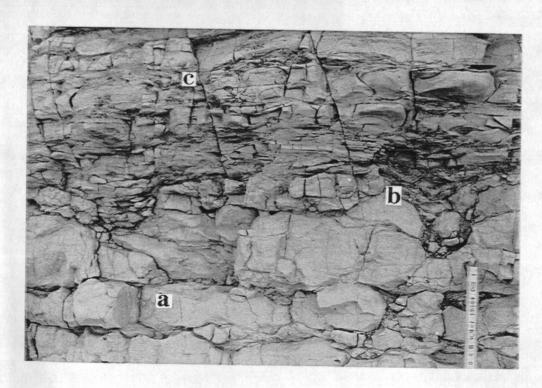


Fig. 5. – Vue d'affleurement montrant la section verticale de la surface E1. a : mudstone à biophase réduite ; b : gouttière d'érosion ; c : micro packstone à pellets, quartz silteux, calcisphaerulidés et calpionelles.

Fig. 5. – Outcrop view showing a vertical cross section of E1 surface. a: mudstone with a low biotic diversity; b: gutter cast, c: micropackstone with pellets, quartz silt, calcisphaerulids and calpionellids.