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INTRACONTINENTAL SUBDUCTION AND MOUNTAIN UPLIFT
THE EXAMPLE OF THE WESTERN ALPS

*
Jacques DEBELMAS

ABSTRACT. - Geological and geophysical data about the Western Alps show that
their uplift is due : (1) to the still acting tectonic stress with a NW vergence ; (2)
to the isostatic rebound linked to the progressive underthrusting of large crustal
slabs in an outwards-trending process which contributes to the building of a sialic
root under the inner part of the range. This double effect started at the Early
Oligocene time.

RESUME. - Les données géologiques et géophysiques concernant les Alpes
occidentales montrent que leur souldvement est A&l : 1) & une compression toujours
active, i vergence NW - 2) & une réaction isostasique liée & la superposition de

grandes lames gnelss1ques, lames de position de plus en plus externe avec le temps et
qui contrlbuent 4 é&difier une "racine" sous les parties internes de 1la chalne. Ces
deux mécanismes ont commencé a agir dés le début de 1'Gligocéne.

Mountain uplift is a difficult problem for geologists as much because of its
present rate of progress as because of its geological causes. Regarding the latter,
geologists mainly call upon

i) a tectonic bulge following the previous compression phases and still being
deformed,

ii) the effect of the isostatic rebound linked to the disturbance undergone
by the crust at the site of the mountain.

The state of our knowledge about the Western Alps is such as to allow the
preceding explanations to be tested and their eventual mutual interaction assessed.

I. PAST AND PRESENT RATE OF UPLIFT

Geological data from the perialpine basin conglomerates clearly show that
uplift of the Western Alps started in Oligocene time, but that the present-day
morphology was only outlined by the end of the Miocene when the pebbles from the
External crystalline massifs arrived in the molassic basins.

In the French Alps, this uplift is supposedly continuing, at least in some
areas (Fourniguet 1977). The works of this author rest upon a comparison of
first-order levellings performed between 1884 and 1892 on one hand, and from 1961 to
1968 on the other hand, i.e. over a 70-80 year time-span. A mountain bulge, including
the Northern External crystalline massifs (Mt Blanc, Belledonne, Pelvoux) and the
allochthonous mountains to their east (Penninic zone) (Fig.l), is now rising with an
average rate of 1 mm/year. Over the same time-span, the Subalpine ranges are more or
less immobile.

In the Swiss Alps, a very similar conclusion arises from levelling
measurements (Schaer & Jeanrichard 1974), yielding an average uplift of 1 mm/year in
the Pennine area and the Aar massif. But consideration of mineralogical data (time of

*
Department of Geology, University of Grenoble (France),
CNRS associated laboratory 69

Institut Dolomieu, F 38031 Grenoble Cedex



2

cooling of the minerals and depth of their formation, Schaer & al. 1975) shows that
these results may be extended beyond the present time : the uplift may have proceeded
at a similar rate (0.3 to 0.6 mm/year) since the Miocene. Guillaume (1982), after
assessing the volume of material removed by erosion, reached the same conclusion for
the whole Alpine arc.

Furthermore, Swiss geologists, from comparisons of two sets of levellings
(1877-1919 and 1919-1970), conclude that '

1. If the average uplift is about 1 mm/year as in France, some places yield
higher rates in Switzerland, e.g. 3 mm/year in the Pennine Alps immediately north of
the Insubric line, at the end of the 19 th century, and now 1,7 mm/year near Chur, a
rate we shall discuss later.

2. The greatest rates of uplift have not always occurred in the same place.
So, the various crustal blocks in the Alps have undergone different uplift histories.
This is logical, since such high uplift rates running continuously from the Tertiary
up to the present time would have raised the chain to heights such that the resulting
erosion would have carved the material down to the deep basement. However this is
possible in the Ticino area where this basement occurs alone and where metamorphism
data show that 20 to 25 km thickness of terranes has been eroded away over the past 35
m.y., but the calculated average uplift is only 0.5 to 0.6 mm/y.

II. THE GEOLOPHYSICAIL DATA

It is interesting to compare the preceding geodetic results to canclusions
arising from geophysical data.

The first point concerns the present seismicity of the Alps, which is of low
to medium grade intensity.

In the French Alps, the seismic centers are superficial ones, restricted to
the upper 20 km of the crust (Perrier 1980). They are divided into two groups

(i) a Piemontese swarm, stretching from Pinerolo to the gulf of Genoa
unfortunately situated in an area where levelling measurements are lacking ;

(ii) a Grenoble-Mont Blanc belt, clearly linked with the External Crystalline
massif front and extending farther in the Valais area.

The stress field (or, more accurately, the maximum compressive stress)
related to these earthquakes is roughly perpendicular to the Alpine arc, from the Aar
to the Argentera massif (Frechet 1978). This means that the stress trend changes from
N-S in the Aar massif to E-W in the Belledonne massif reaching NE-SW in the Argentera

Seismic velocity profiles. Measurements (Perrier  1980) indicate a
low-velocity channel between depths of -11 to -23 km under the Crystalline external
massifs and, with a lesser accuracy, under the internal Alpine zones, i.e. precisely
below the zones with highest rate of uplift (Fig.2). Thouvenot and Perrier (1980)
consider this channel to be a shear zone within brittle material in the gneissic
basement. This shear plane would rise from the SE to the NW, and would emerge from the
basement at the western boundary of the External crystalline massifs, about 9 km in
depth, at the bottom of the sedimentary cover (this cover is here thickened by folding
and thrusting). For Thouvenot and Perrier, this thrust would still be active, the push
acting mainly at the front of the External crystalline massifs precisely where the
uplift would be maximum. Further west, below the Subalpine chains, the shear plane
disappears, becoming perhaps a decollement zone along which the Subalpine cover is
stripped off and displaced westwards.

In the Swiss Alps, numerous works (Giese & al. 1970, Hsi 1979, Mueller & al.
1980, Rybach & al. 1980, Mueller in Hsli 1982) strongly suggest a similar crustal
structure in a stack of large slabs. The focal mechanisms of regional earthquakes show
a clear component of thrust displacement at the front of the Aar massif (Ahorner et
al. 1972). Further southwards, seismic data are consistent with the results arising
from the French-Italian Alps : here again we find that a 200 km wide slab is probably
moving northwards upon a thrust plane, from depths varying from -15-20 km to the South

to -5-7 km to the North (Roeder, 1980, p. 360).
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Fig.2. E-W section trough the Western Alps, North of Grenoble
White : crystalline basement
Black : Penninic sedimentary cover and ophiolites
Vertical hatching : External sedimentary cover
A. Moho Upper Miocene offset ; B. Moho present-day offset.
ZZ. Low-velocity zone of present-day seismic waves
H. Probable upper boundary of the eroded sedimentary cover
Compiled from Perrier (1980), J. Debelmas & al. (1983), Ménard & Thouvenot
(1984) .

III. EVOLUTION OF THE THRUSTING STRUCTURES IN THE SPACE AND TIME
After this brief mention of geodetic and geophysical date, one must return to

more geologic considerations. They will suggests that the active thrusts, now observed
in the front of the External crystalline massifs, are the most recent in a stack of

older intracrustal thrusts, built one after another, from the Eocene, and
progressively prograding outwards of the chain as Triimpy noticed as early as 1975. The
idea is now in progress (Malavieille et al., 1983 ; Malavieille, 1984 ; Ménard &
Thouvenot, 1984) but the published papers did not sufficiently emphasize available
geological data. :

1. In Cretaceous time, the crustal thickening starts from the oceanic domain
and its immediate surroundings (Fig.l) : the subduction of a part, at least, of the
oceanic crust and the obduction of a large oceanic slab (or slabs) upon the European
margin occured, immediately followed by the splitting up of the Austroalpine frontal
units. Such events are documented by radiometric ages of 130 My (Neocomian) to 60
(Senonian) in the Sesia gneiss, oceanic ophiolites and internal Penninic material
(Trimpy, 1980 ; Desmons, 1977). But these ages are provided only by basement rocks and
such an evolution is probably related to deep cleavages and splitting, while in
surface, at least in some areas, the sea persisted. Fossiliferous Upper Cretaceous

sediments in Piemont and Liguro-Piemont sequences are now conspicuous : besides the
classical Helminthoidic flysch, the Schistes lustrés have provided
micro-paleontological Upper Cretaceous evidences (Lemoine & al., 1984 ; Marthaler &
al., 1986).

This first periode is the time of the Alpine HP metamorphism. According to
the 30 Kb pressure invoked by Chopin (1984) for the Dora Maira material
recrystallization, we may assume that at 100 My, the splitted edge of the European
margin (i.e. the Upper Penninic units) reached its maximum burial (90 km according to
Chopin !).

Besides, from general considerations, it is possible to assume that this
first set of movements was roughly N-S to NW-SE.
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2. puring the Late Eocene, the splitting of the Crustal European material
prograded to the North and the West. It involved the External Penninic units
(Subbriangonnais and Briangonnais units where the stratigraphical sequence ends with
Lower to Middle Eocene sediments) and a part of the external Dauphinois domain
(South-Eastern Subalpine and Provence chains) (Fig.l).

The age of this new set of phenomena is given

- in the External 2zones, by stratigraphic records (unconformity of the
Oligocene molasse upon the folded previous sediments including Eocene sediments) ;

- in the Penninic zone, by radiometric dating of the contemporaneous
greenschist metamorphism minerals, i.e. 38 My (Desmons, 1977).

The conditions of this "mesoalpine" metamorphism (which is of amphibolite
facies in the deepest basement slabs) implies their sinking and stacking down in an
incremental process which progressively enlarged the sliced deep bulge of the Eonene
Alpine chain. The origin of this new underthrusting of sialic crust slices may be the
existence of a probably thinned and brittle crust below a part, at least, of the
Briangonnais domain as early as the Carboniferous. Such a thinning is revealed by the
thick Briangonnais Carboniferous basin and also by the importance of the pre-Permian
tholeitic material in the basement itself (Parison, 1984).

As much in the Briangonnais sedimentary cover as in the basement, the Late
Eocene deformation is linked to a SE-NW stretching lineation due to thrust movements
to the NW (Steck 1984, Platt & al. 1985). After more complex transitionnal
deformations linked with a deep-seated dextral E-W simple shear in the Central Alps
(Steck 1984), there occurs the famous "back-folding" of Alpine geologists, with an E
to SE vergence in France and S vergence in Switzerland. This backfolding may represent
the antithetic folds and thrusts of the Upper Eocene contractions, because the
southernmost of the these backfolds are unconformably overlain by the Oligocene
molasse of the South Padan basin (Debelmas 1963, p. 139), but this conclusion cannot
be generalized (Tricart, 1980).

3. From the Late Oligocene or the Early Miocene, a new subduction of the
crust occured, North and West of the preceding ones, all along the line separating the
External Alpine =2zone from the Internal ones, i.e. the so-called "chevauchement
pennique frontal”. The new subducted wedge includes a part at least of the External
crystalline massifs, especially the slices and mylonitic zones of their eastern
(France) and southern (Switzerland) side (Fig.l). This striking event of the Alpine
evolution has been underestimated by most French geologists who generally did not
separate it from the event of the Later Miocene-Early Pliocene. The former is dated

a) by radiometric data from the Crystalline external slices with 18 to 15
m.y. overprints upon ages ranging from 41 to 36 m.y. (Baggio & al. 1967 : Rb/Sr on

biotites ; Leutwein & al. 1970 : K/Ar on adulaire and muscovite, Rb/Sr on
muscovite ; Demeulemeester 1982 : K/Ar on phengite) ;
b) by indirect reasoning (Tricart, 1980) : the cleavage corresponding to the

discussed phase is linked to folds including Oligocene molasse of the French Subalpine
ranges, but truncated by an erosion surface classically reqgarded as pre-Miocene.

Since the External crystalline massifs are implied in such an event, we may
assume that this new splitting involves the part of the external basement which was
adjacent to the Subbriangonnais zone and emplaces large granito-gneissic slices which
will become the External crystalline massifs (Fig.2), whereas other ones (namely the
basement of the Helvetic nappes, paleogeographically lying south of the Aar massif)
disappear in depth, (except the small Tavetsch massif).

In France, the Mont-Blanc massif may also be regarded as a large slice and
as the root of the Lower Helvetic nappe (Morcles nappe). More eastwards, the Italian
Mont-Chétif massif, near Courmayeur (Fig.l), is also a much smaller slice, wrapped up
in the Mesozoic cover, like its more southern and French counterparts, viz. the grand
Chidtelard and Combeynot massifs. During the splitting and the sinking down of this
basement material, the cover was everywhere stripped off westwards.
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To summarize the preceding evolution, the main result of all these
imbrications was to insert one below another large gneissic slabs which progressively
built up a "sialic root” well outlined by the deepening of the Moho which is down to
45 km beneath the Internal Alpine zones (Fig.2).

So doing, it brings about an isostatic readjustement which comes in addition
to the tectonic stacking, the more so since the isostatic equilibrium is not yet
completed in the Alpine realm hence negative isostatic anomalies appear, although very
small one (on the average, -20 milligals in France and Switzerland, Perrier 1980,
Mueller in Triimpy 1980).

The numerical calculation of the interaction rate of these two possible
causes of the Alpine uplift (isostatic readjustement and tectonic stress) has been
made (Neugebauer and al. 1980) on the Basel-Como geotraverse. For this purpose, a
model of the crust has been built making use of the present stress-field (in situ
stress-measurements) and of the gravity anomaly. The best possible agreement between
the presently observed uplift and the calculated one is given by an horizontal
compression less than 100 bars. This value is relatively low : here, isostasy would be
the major factor.

This result is in agreement with some observations. For instance, in
Switzerland near Chur, the present-day highest uplift zone (1,7 mm/year) is clearly
linked with a negative isostatic anomaly of -48 mg. However this result cannot be
generalized without care : for example, the Jungfrau massif is now in rapid uplift
(1,5 mm/year) for a negative isotasic anomaly of -10 mg only. But we are there in the
front of the External crystalline massifs and we know, from seismic data, that this
front is the seat of an important tectonic activity. In this point, tectonic
constraints would exceed isostasy.

If the present dynamics is roughly decipherable in the Western Valais and the
Savoie Alps, it is harder to understand it south of the Pelvoux massif. We have said
that the N or NW vergence of the Swiss and N-French Alps structures are linked with
the N or NW displacement of a crustal slab. Its western boundary follows a
Pelvoux-Argentera line along which complications occur. As already seen, field
measurements indicate that the stress field turns with the range (Frechet, 1977)
(Fig.4) . Such a pattern may indicate a local reorientation of the European tectonic
stress—-field by concentric and hemicircular ramps, viz. the main thrust surfaces of
the Alpine edifice (for the origin of their curved pattern, see Debelmas, 1986).

IV . UNDERTHRUSTING AND UPLIFT : RELATION AND DISCUSSION

The review of Alpine data allow us to conclude that underthrusting causes the
thickening of the sialic root which in turn causes the isostatic uplift. Such a
conclusion calls for three remarks

1. Uplift ought to start as soon as the slices start on their downward
emplacement, i.e. at the Late Eocene or, at least, at the Oligocene. Precisely, such
uplifts occur at this time. This is shown by the incoming, in all the Oligocene
molasse basins, of pebbles containing metamorphized Penninic rocks with the
paragenesis of the mesoalpine event (38 m.y.) (de Graciansky & al 1971 , Triimpy 1980),
i.e. rocks formed below a cover which was later very quickly removed. But the uplift
rate and the height are a matter of discussion. Using data provided by the cooling
rate of the Bregaglia granite (Fig.l), Jdger and al. (1984) suggested height of many
thousands of meters for the Upper Oligocene. Such a height would involve, in spite of
the tropical conditions of this period, low temperatures, which would be the
explanation for the abnormal coolings.

Such a conclusion is probably over-estimated but we must not underestimate
the Oligocene uplifts, namely in the vicinity of the Insubric fault (=Tonale line)
which was acting at this time (Triimpy 1980). At the Oligocene, this fault, separated
two different alpine realms : 1) a northern one, strongly uplifted and eroded, since
the deepest parts of the Pennine Alps were exposed at this time and display
amphibolite facies ; 2) a southern realm, with a difference in level of many thousand
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of meters (20 km according to Triimpy 1980, p. 66, and other authors, see fig.2). of
course, such a difference may have been progressively reached and it does not
necessarily imply extreme heights. But contemporaneous erosion must have been very
active because, in the Como area, the sediments of the Northern border of the Pd plain
show that, by the Early Oligocene, a rapid uplift of the Alpine axis occured : the
Ticino mountains provided huge masses of coarse-grained conglomerates (the so-called
gompholite) with crystalline pebbles. Such conglomeratic deposits last until the
Miocene but it is only from the Early-Middle Miocene that the uplift overtakes the P&
border for the old gompholite levels are folded or tilted at this time and the recent
ones contain calcareous pebbles of the South-Alpine provenance (Gabert 1962).

Concerning the throw of the Insubric fault, we should add that a simple
calculation (20 km uplift for 20 My) yields an amount of 1 mm/year, i.e. the rate of
the present uplift of the External Crystalline massifs. The Oligo-Miocene uplift is
not a negligible phenomenon. It confirms that deep splitting with stacking up
immediately entails wuplift through the joint action of tectonic doming and of
isostasic rebound.

2. A second point to discuss is the reason why that part of the range
situated between Pelvoux and Argentera is no longer being uplifted, although the
constraints in this area are always perpendicular to the Alpine arc, exactly as in the
North.

This may be due to the amount of stress, but another geophysical explanation
may be advanced : focal mechanisms of earthquakes reveal in this part of the Alps a
present activity of normal faulting or dextral shears along N 140 faults which are
most nearly parallel to the displacement of the N Alpine slab. Here, in other words,
the present NS to NE-SW stress would induce no thrusts, but only an extension along
new or old strike-slip NW-SE faults (Frechet and Pavoni 1979). The crust here not
being overthick, there would not be any special isostatic rebound except that rebound
linked to previous compression

3. At 1least, South of the Argentera massif, the relations between
compressive stress, isostasy and uplift are not clear. Moreover, the tectonic frame is
disturbed by the fact that the Alpine structures were carried away northward as a
whole during the Apennine Miocene orogeny. The interpretation of this area is closely
linked with the problem of the increasing curvature of the Alpine arc through time,
problem which is beyond of the scope of this paper.

V. CONCLUSIONS

Geological and geophysical data show that the uplift of the Western Alps is
mainly due to the isostatic rebound linked to the progressive underthrusting of large
gneissic slabs in an outward-trending process which contributed to the growth of a
sialic root under the inner part of the range.

This double action starts at the Early Oligocene time. Since tectonic studies
have shown that stretching lineations are everywhere perpendicular to the general
trend of the chain, it may be concluded that the tectonic process progressed outwards
all along the chain.

But by the Middle Miocene, the pattern was modified in the Ligurian Alps by
the increase of the curvature of the Alps probably due to the Apennine orogeny which
wrenched Alpine structures to the NE. This part of the evolution has not been
developped in this paper.

Now, the tectonic activity seems to be a NW motion of a gigantic slab made of
the Northern Alps. Such a motion implies a lateral shear in the Embrunais-Argentera
area, more or less parallel to the overall European stress-field but the later would
be here reoriented by the curvature of the chain. So, the maximum compressive stress
turns and stays perpendicular to the general trend of the chain, inducing only
extension all along the old shear planes.
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